网站地图
hnsjyk999.com
三九百科 包罗万象
多谐振荡器 发布于:

多谐振荡器:利用深度正反馈,通过阻容耦合使两个电子器件交替导通与截止,从而自激产生方波输出的振荡器。常用作方波发生器。

多谐振荡器是一种能产生矩形波的自激振荡器,也称矩形波发生器。在接通电源后,不需要外加脉冲就能自动产生矩形脉冲!

利用深度正反馈,通过阻容耦合使两个电子器件交替导通与截止,从而自激产生方波输出的振荡器。常用作方波发生器。

多谐振荡器是一种能产生矩形波的自激振荡器,也称矩形波发生器。“多谐”指矩形波中除了基波成分外,还含有丰富的高次谐波成分。多谐振荡器没有稳态,只有两个暂稳态。在工作时,电路的状态在这两个暂稳态之间自动地交替变换,由此产生矩形波脉冲信号,常用作脉冲信号源及时序电路中的时钟信号。

运放构成

在脉冲技术中,经常需要一个脉冲源,以满足数码的运算、信息的传递和系统的测试等用途的需要。多谐振荡器就是脉冲源中比较常见的一种。它的输出波形近似于方波,所以也称之为方波发生器。由于方波是由许许多多不同频率的正弦波所组成,因此取得了“多谐”的称呼。

一般来讲,象三角波、斜波、锯齿波和方波等非线性波型发生器,是由下述三部分构成:积分器(又称之为定时电路),比较器和逻辑电路。如图1的方框图所示。这三部分的作用可以仅由一个或两个集成运算放大器来完成。

这个电路的特点是:

1、适于在音频范围内,对于在某个固定

频率下应用,

2、改变R:可以调整频率,

3、频率的稳定性主要取决于电容C和齐纳二极管的稳定性,所以即使是采用便宜的元器件也能得到频率漂移相当小的多谐振荡器, ②

集成门电路构成

用门电路设计多谐振荡器最简单的办法是用奇数个门首尾相连。但这种振荡器精度低,振荡颇率也不能随心所欲的设计,它只是与奇数个门的延迟时间有关。阻容定时的多谐振荡器结构简单,定时精度高,振荡频率可以自由进行设计。

图1(a)为阻容定时的多谙振荡器电路图,GA、GB为CMOS反相器,R1、C1为定时元件,Rs为串联电阻。图1(b)是其各点的波形图,工作过程可用图2所示电路来说明。当接通电源后,⑧点电位上升,④点电位亦上升。当④点电位上升到GA门的Vtv电平时,GA被打开,②点跳变到低电平,③点上升到VDD电平。接着C1通过GA的“P”管,R1、C1、GA的“n”管放电,在放电的过程,④点电位按R1、C1的时间常数下降,当④点电位下降到VRA电平时,G门被关闭,②点跳变到接近VDD的电平,⑧点跳变到接近0V、④点电位跳变到(VRA一VDD)的电平上。接着C1通过G,的“p”管、C1、R1、GA的“n”管充电。就这样振荡下去。在③点和②点得到互补的输出波形。

晶体管稳频的

晶体管多谐振荡器(以下简称双稳)多用于电子计算机、电子交换器等数字装置,或者是计数器、数字电压表等测量仪器中。

作为双稳电路,厄克勒斯一约旦(Eocles-oJrdan)型电路与电流开关型电路有很大不同,由于其电路结构简单、耗电量少等原因,除高速工作的情况外,几乎都采用厄克勒斯一约旦型电路。

555集成电路组成

555定时器是一种模拟和数字功能相结合的中规模集成器件,该器件成本低,性能可靠,只需要外接几个电阻、电容,就可以实现多种功能。由于电路简单可靠,因此它被大量用于信号发生器、音响告警电路、电子玩具、家电控制等许多领域。在高校电子技术实验教学中,555多谐振荡器实验是经典必做的内容。

其他构成方法

多谐振荡器还可以由分立元件构成或是集成施密特触发器组成。

非稳态多谐振荡器

图3说明了典型非稳态多谐振荡器电路的组态。

基本操作模式此电路运作在以下两种状态:

状态一

Q1导通,Q1的集电极电压为接近0V,C1由流经R2及Q1_CE的电流放电,由于电容C1提供反电压,使得Q2截止,C2经由R4及Q1_BE充电,输出电压为高(但因C2经由R4充电的缘故,较电源电压稍低)。

此状态一直持续到C1放电完成。由于R2提供基极偏置使得Q2导通:此电路进入状态二

状态二

Q2导通,Q2的集电极电压(即是输出电压)由高电位变为接近0V,由于电容C2提供反电压,使Q1瞬间截止,Q1截止,使得Q1集电极电压上升到高电位,C1经由R1及Q2_BE充电,C2流经R3以及Q2_CE的电流放电,由于电容C2提供反电压,使得Q1截止。

此状态一直持续到直到C2放电完毕,由于R3对Q1基极提供偏置电压,Q1导通:此电路进入状态一。

电路启动过程当电路刚接上电源时,两个晶体管都是截止状态。不过,当这两个晶体管的基极电压一起上升时,由于晶体管制造过程中不可能把每个晶体管的导通延时控制得一样,所以必然有其中一个晶体管抢先导通。于是此电路便进入其中一种状态,而且也保证可以持续振荡。

振荡周期粗略的来说,状态一(输出高电位)的持续时间与R1、C1相关,状态二的持续时间与R2、C2相关。因为R1、R2、C1、C2都可以自由配置,因此可以自由决定振压周期及duty cycle。

不过,在每个状态的持续时间是由电容在充电开始时的初始状态(电容两端的电压)决定的,而这又与前一个状态中的放电量有关;前一个阶段的放电量又由放电过程中电流通过的电阻R1、R4与放电过程的持续时间决定…。总而言之,在刚启动电路时,要花费颇长的时间把电容充电(一般而言电容两端在未启动时是完全放电的),不过之后的各个阶段的持续时间便会变短并趋于稳定。

因为多谐振荡器是利用电流的充电过程控制周期,所以振荡周期同时也与输出端流出多谐振荡器的电流量有关。

由于种种不稳定因素对多谐振荡器振荡周期的影响,因此在实作中通常使用更精确的计时集成电路取代单纯的多谐振荡器电路。

单稳态多谐振荡器

又称为单稳态触发器。一旦输入触发信号,就产生一个已确定的时间间隔的脉冲。多用于展宽脉冲宽度等电路中。所谓触发信号就好象手枪的扳机一样,手指一扳就要发射子弹了。

双稳态多谐振荡器

双稳态多谐振荡器 又称为双稳态触发器。每当输入触发信号,一边由高电平(H)转变为低电平(L),另一边由低电平转变为高电平。这种状态一直保持到下一个触发信号的到来,触发信号又使两边发生翻转。

多谐振荡器在温控报警电路中的应用

右图4是利用多谐振荡器构成的简易温控报警电路,图中ICEO是三极管T基极开路时,由集电区穿过基区流向发射区的反向饱和电流,称作穿透电流。ICEO是三极管的热稳定性参数之一,常温下,硅管的ICEO比锗管的ICEO要小;温度升高,ICEO增 大,且 锗 管 的ICEO随 温 度 升 高 增 大 较 快。选用晶体管时一般希望ICEO尽量小,但本电路采用穿透电流大,且对温度变化敏感的锗管,利用其ICEO控制555定时器复位端4管脚的电压。图中555定时器与R1、R2和C组成多谐振荡器,其复位端4脚RD通过R3接地。常温下,锗管穿透电流ICEO较小,一般在10~50μΑ,在3上产生的电压较低,则555复位端4脚RD的电压较低,则555处于复位状态,多谐振荡器停振。当温度升高或有火警时,ICEO增大,在R3上产生的电压升高,使555复位端4脚RD为高电平,多谐振荡器开始振荡,扬声器发出报警声。

温控报警电路不同的晶体管,其ICEO值相差较大,故需改变R3的阻值来调节控温点。方法是先把测温元件T置于要求报警的温度下,调节R3使电路刚 发出报警声。报警的音调取决于多谐振荡器的振荡频率,由元件R1、R2和C决定,改变这些元件值,可改变音调,但要求R1大于1kΩ。


相关文章推荐:
振荡 | 振荡器 | 自激振荡器 | multivibrator | 正反馈 | 振荡器 | 自激振荡器 | 高次谐波 | 时钟信号 | 脉冲技术 | 集成运算放大器 | 齐纳二极管 | 门电路 | 数字电压表 | 信号发生器 | 电子玩具 | 施密特触发器 | 集电极 | 晶体管 | 单稳态触发器 | 触发器 | 三极管 | 基极 | 集电区 | 发射区 | 反向饱和电流 | 555定时器 |