网站地图
hnsjyk999.com
三九百科 包罗万象
对数 发布于:

在数学中,对数是对求幂的逆运算,正如除法是乘法的倒数,反之亦然。 这意味着一个数字的对数是必须产生另一个固定数字(基数)的指数。 在简单的情况下,乘数中的对数计数因子。更一般来说,乘幂允许将任何正实数提高到任何实际功率,总是产生正的结果,因此可以对于b不等于1的任何两个正实数b和x计算对数。

如果a的x次方等于N(a>0,且a≠1),那么数x叫做以a为底N的对数(logarithm),记作x=logN。其中,a叫做对数的底数,N叫做真数。

16、17世纪之交,随着天文、航海、工程、贸易以及军事的发展,改进数字计算方法成了当务之急。约翰·纳皮尔(J. Napier,1550~1617)正是在研究天文学的过程中,为了简化其中的计算永愚而发明了对数.对数的发明是数学史上的重大事件,天文学界更是以近乎狂喜的心陵组估情迎接这一发明。恩格斯曾经把对数的发明和解析几何的创始、微积分的建立称为17世纪数学的三大成就,伽利略也说过:“给我空间、时间及对数,我就可以创造一个宇宙。”

对数发明之前,人们对三角运算中将三角函数的积化为三角函数的和或差的方法已很熟悉,而且德国数学家斯蒂弗尔(M. Stifel,约1487~1567)在《综合算术》(1544年)中阐述了一种如下所示的一种对应关系:

该关系可被归纳为

将对数加以改造使之广泛流传的是纳皮尔的朋友布里格斯(H. Briggs,1561~1631),他通过研究《奇妙的对数定律说明书》,感到其中的对数用起来很不方便,于是与纳皮尔商定,使1的对数为0,10的对数为1,这样就得到了以10为底的常用对数。由于所用的数系是十进制,因此它在数值上计算具有优越性。1624年,布里格陵设洪弃斯出版了《对数算术》,公布了以10为底包含1~20000及90000~100000的14位常用对数表。

根据对数运算原理,人们还发明了对数计算尺。300多年来,对数计算尺一直是科学工作者,特别是工程技术人员必备的计算工具,直到20世纪70年代才让位给电子计算器。尽管作为一种计算工具,对数计算尺、对数表都不再重要了,但是,对数的思想方法却仍然具有生命力。

从对数的发明过程可以看到,社会生产、科学技术的需要是数学发展厚删狱的主要动力。建立对数与指数之间的联系的过程腿设匙户表明,使用较好的符号体系对于数学的发展是至关重要的。实际上,好的数学符号能够大大地节省人的思维负担。数学家们对数学符号体系的发展与完善作出了长期而艰苦的努力 。

a为底N的对数记作

如果

特别地,我们称以10为底的对数叫做常用对数(common logarithm),并记为lgN

称以无理数e(e=2.71828…)为底的对数称为自然对数(natural logarithm),并记为lnN

零没有对数。

在实数范围内,负数无对数。 在虚数范围内,负数是有对数的。

事实上,当

定义

函数

函数基本性质

1. 过定点

2. 当

对数在数学内外有许多应用。这些事件中的一些与尺度不变性的概念有关。例如,鹦鹉螺的壳的每个室是下一个的大致副本,由常数因子缩放。这引起了对数螺旋。Benford关于领先数字分配的定律也可以通过尺度不变性来解释。对数也与自相似性相关。例如,对数算法出现在算法分析中,通过将算法分解境巴束为两个类似的较小问题并修补其解决方案来解决问题。自相似几何形状的尺寸,即其部分类似于整体图像的形状也基于对数。对数刻度对于量化与其绝对差异相反的值的相对变化是有用的。此外,由于对数函数log(x)对于大的x而言增长非常缓慢,所以使用对数标度来压缩大规模科学数据。对数也出现在许多科学公式中,例如Tsiolkovsky火箭方程,Fenske方程或能斯特方程。


相关文章推荐:
底数 | 真数 | 约翰·纳皮尔 | 约翰·纳皮尔 | 恩格斯 | 微积分 | 伽利略 | 三角函数 | 布里格斯 | 数系 | 常用对数表 | 对数计算尺 | 对数表 | 笛卡儿 | 欧拉 | 数学符号 | 卡瓦列里 | 底数 | 真数 | 常用对数 | 无理数 | e | 自然对数 | 实数 | 虚数 | 负数 | 对数函数 | 自变量 | 减函数 | 增函数 |